skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Kovar, Desiderio"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available June 1, 2026
  2. Abstract Molecular dynamics simulations of particle impact have been conducted for a ceramic with mixed ionic-covalent bonding. For these simulations, individual zinc oxide (ZnO) nanoparticles (NPs) were impacted onto a ZnO substrate to observe the effects of impact velocity (1500–3500 m s−1) and particle diameter (10, 20, and 30 nm) on particle deformation and film formation mechanisms that arise during the micro-cold spray process for producing films. The study shows that a critical impact velocity range exists, generally between 1500 and 3000 m s−1, for sticking of the NP to the substrate. Results suggest that solid-state amorphization-induced viscous flow is the primary deformation mechanism present during impact. Decreasing particle diameter and increasing impact velocity results in an increased degree of amorphization and higher local temperatures within the particle. The impact behavior of mixed ionic-covalent bonded ZnO is compared to the behavior of previously studied ionic and covalent materials. 
    more » « less
  3. Abstract A criterion to predict the onset of disordering under biaxial loading based on a critical potential energy per atom was studied. In contrast to previous theories for disordering, this criterion incorporates the effects of strain rate and strain state. The strain state (or stress state) is defined by the combination of strain (or stress) magnitudes and directions that are applied to each sample during the simulation. The validity of this criterion was studied using molecular dynamic (MD) simulations of Ag conducted over a wide range of biaxial strain rates, strain configurations, and crystal orientations with respect to the applied stress state. Biaxial strains were applied in two different planes, ( 11 2 ¯ ) and (001) in eight directions in each plane. Results showed that, when larger strain rates were applied, there was a transition from plastic deformation driven by the nucleation and propagation of dislocations to disordering and viscous flow. Although the critical strain rate to initiate disorder was found to vary in the range of ε ˙ = 1 × 10 11  s −1 to ε ˙ = 4 × 10 11  s −1 , a consistent minimum PE/atom of −2.7 eV was observed over a broad range of strain states and for both crystallographic orientations that were studied. This indicates that the critical PE/atom is a material property that can be used to predict the onset of disordering under biaxial loading. Further, the results showed that this criterion can be applied successfully even when non-uninform strain states arise in the crystal. 
    more » « less